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SUMMARY Osteomyelitis is an inflammatory bone disease that is caused by an in-
fecting microorganism and leads to progressive bone destruction and loss. The most
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common causative species are the usually commensal staphylococci, with Staphylo-
coccus aureus and Staphylococcus epidermidis responsible for the majority of cases.
Staphylococcal infections are becoming an increasing global concern, partially due
to the resistance mechanisms developed by staphylococci to evade the host im-
mune system and antibiotic treatment. In addition to the ability of staphylococci to
withstand treatment, surgical intervention in an effort to remove necrotic and in-
fected bone further exacerbates patient impairment. Despite the advances in current
health care, osteomyelitis is now a major clinical challenge, with recurrent and per-
sistent infections occurring in approximately 40% of patients. This review aims to
provide information about staphylococcus-induced bone infection, covering the clin-
ical presentation and diagnosis of osteomyelitis, pathophysiology and complications
of osteomyelitis, and future avenues that are being explored to treat osteomyelitis.

KEYWORDS Staphylococcus aureus, Staphylococcus epidermidis, antibiotic, joint
infections, nonantibiotic, osteomyelitis

INTRODUCTION

steomyelitis, translated from Greek, means inflammation of the bone marrow

(osteon, bone; myelos, marrow; and itis, inflammation) (1). The disease can be
restricted to a single portion of the bone or affect several regions, such as the marrow,
cortex, periosteum, and/or surrounding soft tissue (Fig. 1) (2). Osteomyelitis is often
classified by the location within the bone, extent of dispersion, and source of infection.
Although it can be caused by a variety of pathogens, it is most commonly caused by
the opportunistic Gram-positive staphylococci (approximately 75% of cases, collec-
tively) (3), which can originate from the blood (hematogenous source) or contiguously.

Microbiology of Staphylococci

Staphylococci are Gram-positive bacteria that have a round morphology and a
diameter of 0.5 to 1.8 wm. The cell wall is what attributes the term “Gram positive” to
staphylococci and is composed of layers of peptidoglycan, lipoteichoic acids, and
teichoic acids (4). There are more than 20 different staphylococcal species described in
Bergey’s Manual of Systematic Bacteriology (5); however, Staphylococcus aureus and S.
epidermidis are the most significant in regard to human interactions (6). S. aureus and
S. epidermidis are usually commensal inhabitants of the skin microflora and mucosal
surfaces. Approximately 20% of healthy individuals are permanently colonized asymp-
tomatically by S. aureus, with 70% of individuals either transiently or not colonized (7).
However, S. aureus has adapted to become a perilous human pathogen causing a
variety of diseases, ranging from suppurative infections, such as boils, to more life-
threatening infections, such as septicemia (8). In addition to a thick cell wall, around 80
to 90% of S. aureus strains possess a capsule which provides protection for the
bacterium, as it has antiphagocytic properties due to the host’s inability to recognize
the invading microorganisms (9). Notably, S. aureus strains that are capsule negative
have been shown to induce chronic infection in mouse models due to their ability to
survive intracellularly (10). The ability of S. aureus and S. epidermidis to colonize and
cause host infection is attributed primarily to the presence of various cell wall-anchored
(CWA) proteins and extracellular factors. Several of these proteins can adhere to host
cells and/or extracellular matrix (ECM) molecules and have been termed microbial
surface components recognizing adhesive matrix molecules (MSCRAMM) (9). Examples
of MSCRAMM s include fibronectin binding proteins (FnBP) and collagen adhesin (Cna)
(11). Once colonized, staphylococci can secrete toxins which aid in invasion and
dissemination throughout the host. Nearly all strains of S. aureus and S. epidermidis
secrete the four hemolysins (alpha, beta, gamma, and delta), lipases, proteases, hyal-
uronidase, nucleases, and collagenase. The main functions of these toxins are to break
down the host tissue and provide nutrients for bacterial survival and growth (12, 13).
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FIG 1 Progression of osteomyelitis. An abscess develops from a localized infection that constricts the blood flow to the area (A),
resulting in an avascular region of necrotic bone tissue called the sequestrum (B), followed by development of new bone
surrounding the sequestrum, termed the involucrum, which may also have a sinus tract through which purulence can escape (C).

MODES OF BONE INFECTION

There are many contributing factors that predispose a patient to developing osteo-
myelitis, including age, diabetes, peripheral vascular disease, intravenous (i.v.) drug use,
surgical implants, and immunodeficiency due to disease or immunosuppressant drugs
(14). The causative organisms in osteomyelitis can originate from either hematogenous
or contiguously spread sources, often referred to as endogenous or exogenous sources,
respectively (15).

Hematogenous Osteomyelitis

Hematogenous osteomyelitis is usually monomicrobial (16). It occurs most com-
monly in patients lacking any prior risk factors or infection; however, it can also be
caused by the seeding of circulating pathogens in the blood, which can arise from an
existing infection. Hematogenous osteomyelitis represents just 20% of all osteomyelitis
infections; however, the majority of osteomyelitis cases in children are hematogenous
(85% of cases for patients under 17 years of age) (15).

Contiguous Spread of Infection

In contrast to hematogenous osteomyelitis, contiguous spread of infection is most
often polymicrobial and most commonly affects adults (17-19). Contiguously spread
osteomyelitis can originate from trauma, direct inoculation during operative proce-
dures, or surrounding infected soft tissues.

It is estimated that half of osteomyelitis cases in adults are due to trauma (20).
Trauma can result in either open or closed fractures (presence or absence of exposed
bone). Damaged connective tissues, including skin, muscle, and bone, expose proteins
to which bacteria readily bind, such as collagen and fibronectin, increasing the chance
of inoculation (21). In a clinical study carried out by Merritt, up to 1 in 5 patients who
acquired open fractures were reported to have developed infections (22).

People with soft tissue infections who develop underlying infection of the bone are
most commonly over the age of 40 and have diabetes mellitus (23). Osteomyelitis
spreading from diabetic ulcers due to neuropathy and vascular insufficiency most
commonly occurs in the bones of the feet: the toes, metatarsal heads, and calcaneum
(24). According to Malhotra et al. and Lavery et al., 12 to 20% of those with diabetic foot
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ulcers develop an infection of the underlying bone (25, 26), and in severe cases of foot
ulcers this prevalence can be higher than 66% (27).

DEVELOPMENT OF ACUTE AND CHRONIC BONE INFECTIONS

The pathology of osteomyelitis is characterized by severe inflammation, impairment
of vasculature, and localized bone loss and destruction. In an attempt to overcome the
infective microorganisms, leukocytes produce inflammatory cytokines and enzymes
that break down the infected and surrounding tissue (28). Purulence consisting of dead
leukocytes and host/bacterial cells can fill intercellular spaces around the infection and
form an abscess. In chronic infection, abscesses can impair blood flow and strip the
periosteum, creating an area of vascularized, necrotic bone called a sequestrum (29).
Vascular impairment makes the foci of chronic infection impervious to the immune
system and systemic antibiotics. The sequestrum is indicative of a chronic infection and
compromises the bone’s integrity. Often the formation of new bone—an involucrum—
occurs, which forms from remaining intact fragments of the periosteum and functions
to provide axial support to weight-bearing bones and prevent pathological fracture (14,
30). Exudate or purulence from the infection may escape through an opening in the
bone called a sinus tract (Fig. 1).

CLINICAL PRESENTATION AND DIAGNOSIS

Diagnosing osteomyelitis is often a difficult challenge, as there are vast variations in
clinical presentation. Early diagnosis is the key to the successful treatment of osteo-
myelitis. Schmidt et al. developed a diagnostic tool for osteomyelitis that uses a scoring
system based on clinical, laboratory, and technical information (31). The scoring system
is based on (i) clinical history and risk factors; (ii) clinical examination and laboratory test
results, including leukocyte counts and detection of inflammatory markers, such as via
the erythrocyte sedimentation rate (ESR) and the C-reactive protein (CRP) level; (iii)
diagnostic imaging, such as ultrasound, radiology, computed tomography (CT), or
magnetic resonance imaging (MRI); (iv) microbiology analysis; and (v) histopathology.
Unfortunately, many of these individual diagnostic methods lack specificity and sensi-
tivity and are associated with many issues, as Tiemann et al. outlined (32). Lab test
results involving leukocyte counts and inflammatory markers are often not reliable. For
example, in a review by Scott et al., 41% of patients who presented with acute
hematogenous osteomyelitis presented with a leukocyte count of <10,500, which is
within the normal range of ~4,500 to 11,000 (33). In up to 40% of osteomyelitis cases,
microbiological tests produce false-negative results. This may be due to the difficulty in
culturing the causative organism secondary to location, inability of the patient to
undergo surgical intervention, or the fact that the patient may have been started on
antibiotics prior to the collection of a specimen for culture, thus altering the results of
laboratory testing. In addition, diagnosing osteomyelitis through imaging methods
is often delayed because bone necrosis is difficult to detect by plain radiography
until up to week 3 of infection, with a reported positive diagnosis rate of only 20%
after 2 weeks (21).

OSTEOMYELITIS CLASSIFICATION

As osteomyelitis is a heterogeneous disease, the large variation in patient popula-
tions along with a number of factors critical for guiding an appropriate treatment
strategy has resulted in more than 12 different classifications. While none of the
classifications are ubiquitously accepted, two classifications are widely used because
they provide information on the nature and origin of the disease while taking into
account the patient’s physiological status, parameters deemed critical in osteomyelitis.
Any type of osteomyelitis can develop from the acute stage and continue into the
chronic stage of the disease (34). Prescription of treatment for osteomyelitis in the
clinical setting largely depends on the classification as either “acute” or “chronic.”
Although there is often much difficulty in this classification, the degree of tissue injury
is generally directly correlated with the disease stage (35). Throughout the literature,
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TABLE 1 Major classification systems used for diagnosis of osteomyelitis?

Cierny-Mader Classification Waldvogel Classification

Anatomic Type Osteomyelitis Stage

Initial admission for the same

Type |l Medullary osteomyelitis Acute
disease
With history of admission for the
Type ll Superficial osteomyelitis Chronic
same disease
Type lll Localized osteomyelitis Source of Infection
Type IV Diffuse osteomyelitis Haematogenous osteomyelitis

Osteomyelitis associated with peripheral vascular

Physiologic Class disease
Osteomyelitis secondary to a contiguous focus of
A-Host Good immune system and delivery
infection
B-Host Compromised locally (B') or Systemically (B)

Requires suppressive or no treatment; minimal disability; treat-

C-Host
ment worse than disease; not a surgical candidate
Clinical Stage
Type + Class = Example: Stage IvB® osteomyelitis —a diffuse lesion ina
Clinical stage systemically compromised host

aThe Waldvogel system was adapted from reference 16; the Cierny-Mader classification was reproduced from reference 36 with permission of
Springer Science and Business Media.

there are a number of detailed guidelines published to classify the infection, the most
highly cited of which are the Waldvogel system and the Cierny-Mader system (16, 36).

Waldvogel Classification

The Waldvogel classification system (Table 1) defines the infection as either acute
or chronic based on the persistence of infection, and the infection is subsequently
classified based on the source of infection (16). Waldvogel et al. found that this
definition not only showed evidence of differences in clinical presentation but also
improved the disease cure rate.

Cierny-Mader Classification

The Cierny-Mader classification system (Table 1) is based on four key factors: the
condition of the host, the functional impairment caused by the disease, the site of
involvement, and the extent of bony necrosis. It does not deem it necessary to
distinguish between acute and chronic infections. In this classification system, the
anatomic type of osteomyelitis (I to IV) is added to the physiologic class of the patient
(A, B, or C), which results in one of the 12 clinical staging systems of adult osteomyelitis
(IABC, [IABC IIABC and IVABC). From this staging system, the osteomyelitis treatment
is derived, including debridement strategies, dead space management, and antibiotic
administration. Cierny et al. state that using these four key factors allows comparison
of new treatment protocols and the effectiveness of new therapeutic modalities (36).

PATHOPHYSIOLOGY OF OSTEOMYELITIS
Bone as a Target Organ
Bone is a dynamic connective tissue that is constantly being remodeled and
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FIG 2 Staphylococcus aureus and Staphylococcus epidermidis cell surface proteins, known as microbial surface
components recognizing adhesive matrix molecules (MSCRAMM:s), that are involved in interacting with bone and
the bone ECM.

renewed under the governance of three main bone cells: osteoblasts, osteocytes, and
osteoclasts. Osteoblasts are the bone-forming cells, derived from mesenchymal stem
cells (MSC) in the bone marrow, and are responsible for producing the main organic
extracellular matrix (ECM) components of bone. When osteoblasts are fully mature
cells, they produce osteoid—unmineralized organic bone matrix—in the form of a
membrane-bound vesicle (37). Osteoid consists of collagenous and noncollagenous
proteins. Collagen type | makes up 90% of the osteoid, with the remainder comprised
of proteins, such as proteoglycans (38) and glycoproteins. Common glycoproteins
found in the ECM include fibronectin, osteonectin, osteopontin, bone sialoprotein, and
osteocalcin (39, 40). When osteoblasts generate and fully immerse themselves in ECM,
they become osteocytes—terminally differentiated osteoblasts. Osteocytes have been
implicated in directing the bone remodeling process through their ability to respond to
bone loading and detection of microcracks. Osteoclasts are the bone-resorbing cells,
which operate by decalcifying hydroxyapatite and degrading organic ECM. Osteoclasts
work in harmony with osteoblasts to retain bone remodeling homeostasis. Notably, an
imbalance in the activity between these cells can result in altered bone morphology
and pathological bone (41-43). When bone is exposed to the external environment,
bone cells and the ECM are ideal colonizing targets of microbes, in particular staphy-
lococci, which have the MSCRAMMs and anchoring proteins to colonize bone (44).

Staphylococcal Colonization of Bone

Once staphylococci have accessed the bone, the first step to colonization is primary
attachment. Attachment is facilitated by the presence of MSCRAMMs and other cell
wall-anchored proteins on staphylococci (Fig. 2). Colonization of bone can occur
through direct interaction with the bone cells, plasma proteins, or the ECM. Once
colonized, staphylococci can produce a biofilm, which facilitates persistence of the
infection (45, 46). Biofilms are organized communities of microorganisms enveloped in
an extracellular matrix attached to a surface (47-49). Additionally, staphylococci can
also produce toxins, many of which facilitate dissemination throughout the host,
allowing recolonization and reinfection (50).

Staphylococcus aureus. In S. aureus, there are multiple MSCRAMMS and CWA
proteins important for the pathogenicity of infection, including protein A (SpA), fi-
bronectin binding proteins A and B (FnBP A/B), bone sialoprotein binding protein (Bbp),
and collagen adhesion protein (Cna) (Table 2). In addition to being anchored to S.
aureus'’s cell wall, SpA can also be secreted. Although the primary function of SpA is
immune evasion, studies have documented its direct role in bone infection. It was
shown that SpA can directly bind to osteoblasts, mediating cell death, inhibition of
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TABLE 2 Protein interactions involved in progression and pathogenicity of staphylococcal infection

Matrix/bridge
Organism MSCRAMM(s) protein(s) Receptor? Functional response Reference(s)
S. aureus Collagen adhesion (CNA) Collagen NA Colonization 68, 201
Bone sialoprotein (Bbp) Fibrinogen Bone sialoprotein  Unknown 67, 202
Fibronectin binding proteins Fibronectin a5B1 Internalization 58-60
(FnBP)
Staphylococcal protein A (SpA) TNFR1 Induction of bone loss (apoptosis) and 51-54
bone destruction (osteoclastogenesis),
inhibits mineralization
S. epidermidis ~ Serine-aspartate repeat- Fibrinogen, collagen NA Colonization 13,78, 79,
containing proteins (Sdr) 82
Extracellular matrix binding Fibronectin NA Colonization 83, 203, 204
protein (Embp)
Autolysin E (AtlE) Vitronectin NA Colonization 84
Autolysin adhesion protein Vitronectin NA Colonization 85
(Aae)
GehD lipase Collagen NA Colonization 86, 205

aNA, not available.

bone formation (osteogenesis), and induction of bone resorption (osteoclastogenesis)
(51-54). The importance of osteoclastic activity in osteomyelitis is becoming evident,
and therefore many studies have emerged to examine the effects of S. aureus in
promoting osteoclastogenesis and osteoclastic activity. Osteoblast inhibition and os-
teoclast activation were also described by Kim et al., who demonstrated an induction
of proinflammatory cytokines by activation of Toll-like receptor 2 (TLR2) in osteoblasts,
resulting in production of RANKL. This in turn activated osteoclast differentiation,
facilitating bone resorption in mice lacking TLR2 and demonstrating the hallmark
presentations seen in osteomyelitis (44). Activation of osteoclasts through various
cellular pathways was also recently documented, with protein A once again being a key
player in this process (54, 55). If S. aureus does not interact directly with the cell, its
FnBPs facilitate binding to host plasma proteins, such as fibronectin and fibrinogen,
which can act as bridging molecules between the bacterium and the host cell receptors
(56, 57). Additionally, when these FnBPs, specifically FnBPA and FnBPB, interact with
fibronectin, it can cause internalization via the asf3; receptor on osteoblasts (58-60).
Activation of this integrin results in the recruitment of molecules, such as tensin and
talin, which interact directly with the cellular cytoskeleton. These molecules in turn
cause the recruitment of tyrosine kinases, which initiate phosphorylation of the cyto-
skeleton and thus uptake of the bacteria (61). Internalization can lead to two outcomes:
apoptosis of the cell or persistence of infection intracellularly. Apoptosis induced by
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) occurs due to it binding
to its receptor on the osteoblast membrane. There are 5 known receptors of TRAIL:
death receptors DR5 and DR4, decoy receptors DcR1 and DcR2, and soluble receptor
OPG. Binding of TRAIL to these receptors leads to the activation of caspases 8 and 10
(62). When activated, these then cleave caspase 3, which results in cellular apoptosis via
mitochondrial dysregulation (63). Additionally, intracellular S. aureus can activate
interleukin-6 (IL-6), IL-12, and colony-stimulating factor (CSF), further contributing to
bone destruction (64, 65). If S. aureus persists intracellularly, it will not activate this
pathway, as discussed in more detail in the sections on complications of osteomyelitis.
Internalization is not unique to osteoblasts and is generally seen as a mechanism of
immune evasion. However, studies have demonstrated that S. aureus can interact with
cells and not cause cell death but become internalized by bone marrow-derived
macrophages, causing differentiation into mature osteoclasts as well as activation of
noninfected osteoclasts (66). S. aureus is also equipped to interact with the bone ECM
through Cna and Bbp. Notably, Cna is the only identified S. aureus cell surface protein
that binds to collagen, whereas Bbp has been documented to bind both bone
sialoprotein (BSP) and fibrinogen (67, 68). Note that it has been shown that MSCRAMMs
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TABLE 3 Toxins and exoproteins involved in progression and pathogenicity of staphylococcal infection

Organism Toxin(s) or exoprotein(s) Functional response Reference(s)

S. aureus Toxic shock syndrome toxin 1 (TSST-1) Activates osteoclastogenesis 74
Alpha-hemolysin (Hla) Osteoblast/osteoclast cell death 75
Panton-Valentine leukocidin (PVL) Persistence of infection 76, 206
Canonical coagulase (Coa) Inhibits osteoblast function 77
Phenol-soluble modulins (PSMs) Osteoblast cytotoxicity 207-209

S. epidermidis PSMs Osteoblast cytotoxicity and biofilm dispersal 90, 210

give S. aureus the ability to invade various mammalian cells in addition to bone cells
(58, 69-73).

Toxins play a major role in the progression and pathogenesis of osteomyelitis. S.
aureus produces many toxins; however, toxic shock syndrome toxin 1 (TSST-1), hemo-
lysins (Hla), Panton-Valentine leukocidin (PVL), coagulase, and phenol-soluble modulins
(PSMs) are known to contribute to the severity of bone infection (Table 3). TSST-1 is
known as a superantigen whose primary function is to inhibit the host immune
response. It was recently shown to activate osteoclasts, increasing bone resorption
through an unknown novel mechanism and contributing to the weakening of the bone
(74). Interestingly, however, this superantigen was not shown to be cytotoxic to
osteoclasts. Hla is one of the most studied cytotoxins produced by S. aureus due to its
prevalence among different strains and its toxicity toward a wide range of mammalian
cells. Hla lyses red blood cells by forming pores in the cell membrane, facilitating the
spread and dissemination of infection through tissues. In persistent bone infection, hla
is downregulated, therefore contributing to the quiescent and latent nature of recur-
rent osteomyelitis (75). PVL is produced by only a small percentage of S. aureus strains
(approximately 2 to 3%) but is associated with persistence and rapid extension of
osteomyelitis in murine models, leading to extensive spread of the infection (76). The
primary role of coagulase is to convert fibrinogen to fibrin, thus providing a fibrin
coating on the surface of S. aureus, protecting it from the host immune response.
Coagulase also aggravates bone destruction and bone loss in mouse models of
osteomyelitis by reducing osteoblast proliferation, inducing apoptosis, and decreas-
ing mineralization (77).

Staphylococcus epidermidis. S. epidermidis has not been studied as extensively as S.
aureus; hence, only a limited number of MSCRAMMs have been identified in this
species, to date. These are the serine-aspartate repeat-containing (Sdr) proteins, extra-
cellular matrix-binding protein (Embp), proteinaceous autolysin E (AtlE), novel autolysin
(Aae), and lipase D (GehD) (13) (Table 2). The most extensively studied cell wall protein
in S. epidermidis is SdrG, which binds fibrinogen (78) and is known to bind to osteo-
blasts (79). SdrG is part of the Sdr family, which is also composed of SdrF and SdrH,
which are expressed in most strains (80). SArF has been shown to facilitate binding to
collagen and is thought to be expressed in isolates from medical device infections (81).
SdrG binds to fibrinogen (78, 82), Embp binds to fibronectin (83), AtlE and Aae bind to
vitronectin (84, 85), and GehD and SdrF bind to collagen, facilitating the interactions
between bone ECM/cells and bacteria (81, 86).

In addition to the cell surface-associated virulence factors, staphylococci also secrete
exoproteins, which can be cytotoxic, to aid in infection and dissemination (Table 3). S.
epidermidis is traditionally known to form biofilms rather than to secrete exotoxin, with
toxin production mostly limited to PSMs. PSMs are short, amphipathic, detergent-like
molecules that have a proinflammatory and sometimes cytolytic function (13, 87).
Biofilms are surface-attached agglomerates of bacteria embedded in a sticky extracel-
lular matrix that is highly resistant to the host immune response and antibiotics. S.
epidermidis is well known to form biofilms on medical device implants, allowing for the
persistence of infection. These device-related infections are commonly seen in ortho-
pedic implants, with removal of the device often required to remove the infection (88,
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FIG 3 Stages of biofilm development (214). The first stage of biofilm formation in bone is attachment. Once
attached, the bacteria begin to accumulate and produce a sticky matrix, which is the initial biofilm. This accumulation
results in the formation of biofilm microcolonies and development of mature biofilm. The biofilm may then finally break
down and release the bacteria from within, causing dissemination throughout the host.

89). Notably, the activation of biofilm production is conversely related to PSM produc-
tion, suggesting that PSM-negative strains readily form biofilms (90).

COMPLICATIONS IN OSTEOMYELITIS TREATMENT
Persistent and Recurring Infections in Osteomyelitis

Staphylococcal biofilm development. The ability of bacteria to form biofilms is a
natural mechanism. The stages of biofilm development are attachment, accumulation,
and dispersal (Fig. 3). A number of factors mediate attachment, including Atl, teichoic
acids, and MSCRAMMs (91), which allow positioning of the premature biofilm. The
presence of human serum proteins alone enhances the expression of MSCRAMMs that
promote biofilm formation (92). Once attached, the bacterial cells within the matrix
multiply and accumulate, shaping the matrix surrounding them to include complexities
such as water channels for nutrient and waste diffusion. It is thought that through
quorum sensing governed by the agr system, bacteria are able to sense their environ-
ment and can disperse from the mature biofilm matrix and spread to other areas (49,
93). At present, there are two types of biofilm: (i) polysaccharide intracellular adhesion
(PIA)/polymeric N-acetylglucosamine (PNAG)-mediated biofilm and (ii) a proteinaceous
biofilm mediated predominantly by FnBPs and the major Atl protein (94, 95). In regard
to S. aureus, methicillin-susceptible S. aureus (MSSA) isolates have previously been
shown to produce PIA biofilm, with fewer invasive methicillin-resistant S. aureus (MRSA)
isolates documented to produce the proteinaceous matrix due to the downregulation
of the accessory gene regulator (Agr) system associated with expression of the meth-
icillin resistance gene in MRSA isolates (95-97). Additionally, extracellular DNA (eDNA)
released from both S. aureus and S. epidermidis is important for the adherence and
accumulation of biofilms. Abolishment of AtlE, involved in eDNA release, resulted in a
reduced capacity of the bacteria to form biofilms (18).

In chronic osteomyelitis, the ability of staphylococci to persist and reinfect is partially
attributed to the development of biofilms. The presence of biofilms has been sug-
gested as the main cause of clinical quiescence of chronic osteomyelitis. Biofilms can
provide protection from the antibiotic arsenal, the host immune response, and shear
stresses. Biofilms further enhance the survival of the staphylococci residing within them
by functioning to seize and concentrate important environmental nutrients (18, 98).

As with most cases of chronic osteomyelitis, surgical intervention is usually required
for removal of the sequestrum. The sequestrum has a decreased vascularity and oxygen
tension, providing optimum conditions for bacterial attachment and biofilm formation.
Debridement of the infected area would also include removal of the sequestra, as
antibiotic therapy alone is unable to sufficiently penetrate the biofilm matrix and
eradicate the infection within. Surgical revisions can result in infection relapse in up to
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40% of cases; however, if the sequestrum remains present in the bone, it will facilitate
spreading of the infection throughout the bone. Spreading of the infection will
eventually result in the need for radical debridement and possible limb amputation
(99, 100).

Persistent SCV staphylococci. In conjunction with the biofilm matrix, which pro-
vides protection for the bacteria within it, alterations of the bacterial metabolic activity
which confer resistance to antibiotics are also observed. Persister cells and small-colony
variants (SCVs) are found within biofilms and have been investigated extensively in the
staphylococcal species (101, 102). SCVs have been described for osteomyelitis cases and
have been deemed responsible for the recurrent infection associated with the disease
due to their ability to survive intracellularly in a dormant state for many years, to then
remerge as the parent strain and cause reinfection (103). Invasion and persistence of S.
aureus in naturally nonphagocytic cells have been described for a range of cell types,
including endothelial cells and keratinocytes (104, 105). One family of surface proteins
found across the majority of S. aureus species are the FnBPs (e.g., FnBPA and FnBPB),
which bind to the extracellular matrix protein fibronectin (106). It has been shown that
these proteins not only can promote adhesion to surfaces but also can interact with
naturally nonphagocytic cells and encourage uptake into the cell. Notably, Cna and Bbp
favor FnBP internalization into nonprofessional phagocytic cells (44). This internaliza-
tion has two possible outcomes: either the S. aureus invader activates production of the
tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which in turn causes
osteoblast apoptosis, or it can persist intracellularly as an SCV and cause recurrent
infection months or years later (107, 108).

Antibiotic resistance. Antibiotic resistance is an international issue that affects both
developed and developing countries. The World Health Organization (WHO) and the
Centers for Disease Control and Prevention (CDC) estimate that in both the European
Union and the United States, more than 23,000 people die annually as a result of
antimicrobial resistance, with S. aureus responsible for nearly 50% of those deaths.
Antibiotic resistance can exacerbate staphylococcal infections by making them increas-
ingly difficult to treat with antibiotics. There are three main mechanisms by which
bacteria confer resistance: (i) changes in the membrane permeability/efflux of the
antimicrobial, (ii) destruction of the antimicrobial compound, and (iii) alteration of the
bacterial protein which is a target of the antimicrobial (109, 110). Efflux pumps present
in bacteria can confer a natural resistance to antibiotics. These pumps are seen across
both Gram-negative and Gram-positive bacteria, including Escherichia coli and S. aureus.
When overexpressed, these pumps have the ability to transfer unwanted molecules
from the cell (111, 112).

The direct inactivation of antibiotics via enzymatic strategies has been a major
mechanism of antibiotic resistance since penicillin resistance emerged in the 1940s.
Penicillinase, or B-lactamase, was shown to directly inactivate penicillin via hydrolysis of
the B-lactam ring of the compound (113, 114). Since then, a multitude of enzymes have
been identified that can degrade various classes of antibiotics, including B-lactams,
aminoglycosides, phenicols, and macrolides (114).

Alteration of the bacterial target to prevent the interaction with the antibiotic is
another mechanism by which resistance is conferred. There are two ways that this is
possible: via a mutational change in the target protein or by a nonmutational modifi-
cation of the target. An example of target change includes the acquisition of a gene
homologous to the original target, such as that seen in S. aureus and S. epidermidis. In
an effort to overcome the arsenal of B-lactams, S. aureus and S. epidermidis acquired a
methicillin resistance gene, mecA, which is carried on a mobile heterogeneous genetic
element called the staphylococcal cassette chromosome (SCC). The mecA gene encodes
a penicillin binding protein, PBP2a, which displays decreased affinity for B-lactam
antibiotics, allowing cell wall synthesis to occur as normal in the presence of the
antibiotic. This can lead to the emergence of MRSA (115-118). MRSA is often isolated
from bone infections and is usually treated with vancomycin, a glycopeptide that
inhibits cells wall synthesis of S. aureus in a manner different from that for B-lactams.
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However, vancomycin-resistant S. aureus (VRSA) was isolated in Japan in 1997, instilling
concerns over the treatment of these infections globally (119).

Noninfectious Complications of Osteomyelitis

With the onset of infection, there are various complications related to the bone that
are not directly related to the infection but are a result of the infection. As previously
described, the presence of infection can result in the production of cytokines which
activate the bone-resorbing osteoclasts. Additionally, the presence of infection causes
osteoblast cell death, thus preventing new bone formation (51, 53). This weakens the
bone, which can result in pathological bone fractures, further compounding the issue
(120). Moreover, surgical debridement of the bone can also result in weakening of the
bone, which may further result in bone fractures if the bone is not supported suffi-
ciently or is loaded prematurely. In the case of vertebral osteomyelitis, neurological
compromise has been described. This includes documentation of motor weakness,
paraparesis, and even paralysis, all caused by abscess formation compressing various
parts of the spine, such as the spinal cord and nerve root (121). In children, osteomy-
elitis at the growth plates of long bones may interrupt normal growth. Patients with a
chronic draining osteomyelitic sinus are also at increased risk of development of a
squamous cell carcinoma (122).

CURRENT TREATMENT STRATEGIES

Osteomyelitis therapy requires an interdisciplinary approach involving a combina-
tion of patient evaluation, antibiotic therapy, and surgical intervention (123-125). Once
the diagnosis of staphylococcal osteomyelitis is established, there are several factors
that need to be considered for effective treatment. Successful treatment will almost
certainly depend on debridement of infected tissue and the surgical resection of any
necrotic bone or prosthetic material. Fundamentally, necrotic bone is the hallmark of
chronic osteomyelitis, and its presence necessitates surgical debridement prior to any
successful antimicrobial treatment. The management of prosthetic joint infection is
beyond the scope of this review, but this is well covered elsewhere (126). Fracture
fixation may also be required. When surgery is not possible, the patient may require
long-term (usually oral) antimicrobial suppression of the infection.

Osteomyelitis Treatment Guidelines

The 2013 Cochrane review of chronic osteomyelitis examined all randomized and
quasi-randomized trials of different antibiotic regimens given after surgical debride-
ment of chronic osteomyelitis and found only eight small applicable trials, with a total
of just 282 patients (127). Most trials were over 20 years old and do not reflect the
emerging prevalence of antimicrobial-resistant pathogens, which are becoming more
and more commonplace in modern health care settings. The authors concluded that
the quality and reporting of these trials were often inadequate.

The level of evidence for treatment of acute osteomyelitis in adults is even worse.
There is little objective evidence for the accepted precepts of treatment, and large,
high-quality trials are lacking. There are various pieces of advice on the duration and
route of treatment, and confusion exists regarding the superiority of intravenous/
parenteral treatment over oral treatment. There are no Cochrane reviews for the
treatment of acute osteomyelitis in adults. There are no UK or ECCMID guidelines for
the treatment of acute osteomyelitis in adults, although the Bone Joint Infection
Committee for the Italian Society of Infectious Tropical Diseases (SIMIT) guidelines are
published in English and can provide useful guidance to clinicians (128). There are
widely accepted and used Infectious Diseases Society of America (IDSA) treatment
practice guidelines for the treatment of prosthetic joint infection and vertebral osteo-
myelitis, but dedicated treatment guidelines for acute osteomyelitis are still awaited.
The treatment of acute osteomyelitis can be difficult and is largely based on expert
opinion.
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Although S. aureus and S. epidermidis remain the commonest etiological agents of
native bone and joint infections, empirical treatment of osteomyelitis should be
delayed (where possible) until samples for culture are obtained to allow for optimal
antimicrobial selection (129). The gold standard for diagnosis is bone biopsy (130).
Having found an organism to treat, the results of susceptibility testing can then inform
the choice of the optimal agent, route, and duration of treatment.

Antibiotic Selection

The agent selected for treatment should be guided by the antimicrobial suscepti-
bility testing results. The most important susceptibility distinction is the oxacillin/
methicillin susceptibility result, which defines whether methicillin-susceptible or
-resistant S. aureus or S. epidermidis (MSSA/MSSE or MRSA/MRSE) is involved. If the
organism has not been cultured but is detected by 16S rRNA gene PCR or another
molecular method, then the susceptibility testing results may not be available, and
treatment has to be planned on the basis of the resistance patterns detected from the
staphylococci cultured from the patient’s other sites or local epidemiology. One day,
genome sequencing may possibly be used to provide a genotypic prediction of the
organism'’s susceptibility pattern (131), but this is expensive and not available outside
research labs at present. An indication of the success of the selected treatment method
may be given by reductions in the erythrocyte sedimentation rate (ESR) and the
C-reactive protein (CRP) level. The main treatment choices for both methicillin-
susceptible and -resistant S. aureus and S. epidermidis all achieve therapeutic levels of
bone penetration (132) and are shown in Table 4 (133, 134).

Route and Duration of Treatment

Since the paper of Waldvogel et al. in the New England Journal of Medicine in 1970
(135), a treatment duration of at least 4 weeks has commonly been advocated. This is
based on Waldvogel et al.'s comparison of patient outcomes between two groups
treated with “intensive” (more than 4 weeks) and limited therapy regimens. This
rationale has been reiterated in recent years based on similar case series. Zimmerli
published a meta-analysis of vertebral osteomyelitis trials and found no significant
difference in outcomes for 22 different treatment regimens (136). Seven trials in S.
aureus osteomyelitis from 1987 to 1999 showed no difference in outcomes between
parenteral and oral antibiotics, but he noted that emerging resistance trends may
render these outcomes clinically meaningless. He concluded that “although control
trials are lacking, a treatment duration of 6 weeks is generally recommended.”

However, antimicrobial choice should also be determined by the reported penetra-
tion of the chosen agent into bone. Extant data are drawn from animal models
comparing bone and serum levels of drugs, but there is a lack of standardized
methodology and standard assays, and performances may differ from animal bone to
human bone and between diseased and healthy tissues (130). Further, antibiotic levels
may differ between healthy/experimental tissue and diseased human bone due to the
differences in the pH and oxidative microenvironment of infection (136). The commonly
used animal models were first developed by Norden et al. in the 1960s, and these have
contributed to our understanding of bone revascularization and remodeling in re-
sponse to infection and debridement, but some of the drugs used in humans are toxic
to animals or have a poor correlation between animal and human efficacies, and
vancomycin (which is a commonly used agent in human treatment) performs poorly in
rabbit models (137). Lew and Waldvogel (2) reviewed the treatment of acute osteo-
myelitis, and while they concluded that antibiotics should be given for 4 to 6 weeks and
“if possible by the intravenous route,” they did caution against the complications and
risks associated with long-term intravenous catheters and a prolonged hospital stay.
They concluded that “parenteral therapy remains the approach of choice until more
comparative studies are completed” (16). However, there is an emerging body of
opinion and evidence to challenge the dogma of 6 weeks of parenteral treatment.
Spellberg and Lipsky questioned Waldvogel et al.’s case series and described it as
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retrospective, uncontrolled, heterogeneous, and based only on using penicillins as the
treating agent (132). They stated that many oral agents now available can penetrate
bone well and achieve levels in excess of the MICs, including agents with some action
against susceptible strains of MRSA. They concluded that oral therapy is acceptable and
simple, that any preference for parenteral treatment may be based “more on custom
than evidence,” and that no strong evidence supports 4 to 6 weeks of treatment. Daver
et al. retrospectively reviewed a cohort of adults with S. aureus osteomyelitis and
compared those who received more than 4 weeks of intravenous treatment (median
treatment duration of 60 days) to a group receiving less than 4 weeks of treatment
(median intravenous treatment of 12 days followed by 42 days of oral treatment) (138).
The overall cure rate was 74%, with no significant difference between the groups.
Several other studies have shown equivalent results between intravenous treatment
and highly bioavailable oral treatment (127, 139, 140).

Clinicians are eagerly awaiting full publication of the OVIVA trial (oral versus i.v.
antibiotics for bone and joint infection) (139). This large multicenter trial (>1,000
patients from >20 UK centers) is a randomized, noninferiority trial comparing oral and
i.v. antibiotics for the duration of the patient’s osteomyelitis treatment. Preliminary
results presented at ECCMID 2017 demonstrated equipoise, reflecting the strongest
evidence, to date, that carefully selected, highly bioavailable agents with good bone
penetration are an appropriate therapy for bone and joint infections, relieving physi-
cians of the long-held dogmas that intravenous therapy is paramount in the treatment
of these infections. As well as facilitating early discharge from hospital, the oral route
obviously avoids the potential complications of long-term indwelling venous access
catheters.

Dead Space Management

After debridement of the infected site, there is an area left that is termed dead
space. Dead space management typically involves harvesting autologous or autoge-
nous bone grafts, most often from the pelvic iliac crest, followed by implantation into
the defect site. Autologous bone grafts remain the gold standard for promoting
healing, with almost 2.2 million procedures estimated per annum (133, 141). Grafts of
this kind have optimal biological performance in terms of osteogenicity, osteoinduc-
tivity, and osteoconductivity (142). However, the use of autologous bone grafts is
limited by considerable donor site morbidity, postoperative pain, and risk of infection
and the lack of available tissue. Allogeneic bone grafts can also be employed, most
commonly by transplantation of sterilized cadaverous bone. However, this is also
restricted due to viral transmission and immune rejection issues (15, 143). Another
method used to manage dead space is the use of muscle flaps. This method has several
advantages, such as malleability, a dense capillary network, and encouragement of
rapid collagen deposition. One study by Anthony et al. demonstrated a 96% success
rate in 34 patients by use of this strategy (144). Drawbacks, however, include recurrent
infection in cases of chronic osteomyelitis, which can result in infection of the muscle
flap (145).

Local Antibiotic Delivery Strategies

The systemic administration of a sufficiently high dose of antibiotics to reach the
necrotic region and clear the infection often results in toxicity. Therefore, a number of
products focused on the local delivery of antibiotics to the site of infection while
simultaneously regenerating bone have emerged in recent years (146-151). There are
a range of products currently on the market (Table 5), which are typically classified
according to the degree of biodegradability of the carrier and which vary with regard
to material type, antibiotic type, and delivery method. Each technique ultimately aims
to reduce the dependence on systemic antibiotics, decrease hospitalization costs, and,
importantly, prevent late relapse, which is common in chronic osteomyelitis.

Nonbiodegradable antibiotic delivery systems are based on the acrylic material
polymethylmethacrylate (PMMA), in the form of either cement (Palacos) or beads
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(Septopal). These can be combined with a number of antibiotics and have been used
extensively in surgery to locally deliver antibiotics for the treatment of various muscu-
loskeletal infections. Notably, this treatment is limited due to toxicity and the require-
ment for a thermally stable antibiotic (152). Additionally, PMMA products require
removal, giving rise to the risk of reinfection. This drawback can be overcome by the
use of biodegradable antimicrobial products.

Biodegradable delivery systems using calcium sulfate beads and collagen sponges
with antibiotics have been in use for the past decade. These biodegradable delivery
systems allow for the local delivery of antibiotics to the site of infection while providing
a scaffold for the repair and regeneration of bone. Such products include Stimulan
beads, which can be combined with a number of antibiotics, Collatamp G/EG (EUSA
Pharma), and Genta-Coll (Resorba).

Nonantibiotic Antimicrobial Therapies

Current treatment strategies are continuously being researched and optimized, with
many therapies, such as the Collatamp G/EG and Stimulan products mentioned above,
reaching clinical settings. However, there are various limitations to these treatments, in
particular targeting the infection. Thus, research into new and emerging technologies,
such as nonantibiotic compounds, is an area of growing interest. A wide range of
nonantibiotic materials, such as metals, polymers, and peptides, demonstrate an-
timicrobial activity (153-155). To date, these materials have been delivered by a
variety of methods, including topically to the skin in the form of creams or
bandages, as a coating on the surfaces of medical devices, or combined with other
natural scaffolding materials and delivered locally to the site of infection, often
reducing or even negating the use of antibiotics. Many of these nonantibiotic
antimicrobial therapies are either clinically available or on the regulatory path
toward product approval.

Metals. A number of metals, e.g., silver (156-158), iron (159), mercury (160), tellu-
rium (161, 162), copper (163, 164), zinc (21, 165, 166), and lead (167), have been shown
to possess antimicrobial properties. In contrast to antibiotics, metals do not pose the
risk of decomposition and can usually be processed at high temperatures (168). The
mechanisms by which metals target microbes are only partially known; it is thought
that some metals kill microbes by ion penetration, which inactivates microbial enzymes,
while others impair membrane function or produce reactive oxygen species (167, 169).
They have even been shown to be potential antimicrobial agents against drug-resistant
bacteria, including MRSA and MRSE (170).

Polymers (chitosan). Chitosan is a positively charged linear polysaccharide that is
found naturally, most commonly derived from the shells of crustaceans. It is biode-
gradable, biocompatible, and nontoxic and displays antimicrobial activity (171). The
molecular weight and degree of deacetylation of chitosan are said to affect its antimi-
crobial activity (172, 173). Chitosan also has excellent metal binding properties, as it is
a chelating agent, and it is often combined with metal ions, such as the ions discussed
above, to increase its antimicrobial activity against bacteria, including S. aureus (includ-
ing MRSA) and S. epidermidis (174, 175).

Peptides. Antimicrobial peptides (AMPs) are short proteins (<50 amino acids) that
form part of the human innate immune system and are secreted by leukocytes,
epithelial layers in the skin, and various mucosal membranes (176, 177). Some antimi-
crobial peptides, e.g., LL-37, demonstrate broad antimicrobial activity along with the
promotion of bone regeneration (178, 179). LL-37 has also been shown to inhibit both
the binding and biofilm-forming abilities of S. epidermidis (180) and has demonstrated
effectiveness against both extracellular and intracellular S. aureus isolates (181). There
are currently 2,707 peptides in the Antimicrobial Peptide Database reported to have
antimicrobial activity derived from a variety of sources, including bacteria, archaea,
protists, fungi, plants, and animals (182).
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CONCLUSIONS AND FUTURE PERSPECTIVES

Staphylococcus-induced osteomyelitis is a major clinical challenge, as current treat-
ment strategies are suboptimal for tackling both the infection and restoration of the
affected bone. The pathogenesis of this disease is a double-edged sword whereby not
only can staphylococci utilize bone for colonization, but bone itself can facilitate
infection progression. Moreover, in addition to the ability of staphylococci to adapt to
and evade the immune response by using the host's own machinery, they have also
acquired resistance mechanisms to survive a plethora of antibiotic treatments available
today. This, in conjunction with the need for surgical intervention, has led to new,
exciting approaches in the field. For example, there has been a shift toward developing
bifunctional bone-regenerative biomaterials whose degradation matches the native
bone regeneration rate, combined with local delivery of antibiotics (183-185). Control-
ling the release of antimicrobials, which functions both to minimize systemic toxicity
and to reduce the risk of inducing antibiotic resistance by ensuring that the release
dose and rate are above minimum bactericidal concentrations sufficient for total
infection clearance, has also become a hot topic in the drug delivery field. This may be
achieved through methods such as microparticle incorporation or surface adsorption,
with an on-demand release responsive to infection development (pH change, presence
of bacterial toxins, or raised temperature) possible (186-189). Although nonantibiotic
antimicrobials may be second to antibiotics at infection clearance, they do have the
added advantage of overcoming some of the resistance mechanisms developed by
bacteria (190-192). These nonantibiotic antimicrobial-loaded materials may be used for
infection prophylaxis, perhaps after orthopedic procedures, which may be lengthy,
post-implant removal, or following bone debridement if there is an infection risk.

Another exciting research avenue is the development of new methods to target
infection by using a more tailored approach. One such area is the use of clustered
regularly interspaced palindromic repeats (CRISPR). CRISPR technology has gained
much attention for its gene editing abilities, mainly in mammalian cells (193, 194).
However, there has been considerable research into the use of CRISPR for the treatment
of infectious diseases (195). Seminal research by Bikard et al. demonstrated the poten-
tial to use CRISPR/Cas9 in targeting staphylococcal infection by targeting the methicillin
resistance gene in S. aureus, making a MRSA isolate susceptible to methicillin once
again (196). Moreover, when the technology was delivered in vivo, there was a
moderate, albeit significant reduction in infection in mouse models of S. aureus
infection. This research demonstrates the potential use of CRISPR/Cas9 in vivo, advanc-
ing the field toward a more targeted and selective approach to treat infections.

Currently, the majority of biological processes understood today are conducted in a
two-dimensional (2D) setting. However, there is an increasing need for more physio-
logically relevant models (197). Studies using three-dimensional (3D) models over the
past 2 decades have bridged the gap between 2D cell culture and in vivo culture (198,
199). The development of collagen-based scaffolds for tissue regeneration has pre-
sented a new focus for studying bone infection. Research from our group has demon-
strated that staphylococcus-induced bone infection results in hypermineralization of
the osteoblasts, correlating with increased metabolic activity, when the bacteria are
cultured in a 3D bone matrix (N. Kavanagh, F. J. O'Brien, and S. W. Kerrigan, submitted
for publication). This has not been demonstrated previously, therefore highlighting the
importance of using more physiologically representative models to study infection.
Using such 3D models will help us to elucidate and understand disease progression and
thus inform our decisions for translating into in vivo models.

To conclude, staphylococcus-induced bone infection requires extensive research,
with a particular focus on the molecular mechanism adopted by staphylococci to cause
infection. Development of physiologically relevant models, such as the 3D model
developed by our group, is an important part of driving knowledge forward within the
field. As a result, incorporating new emerging technologies into the scaffold, such as
CRISPR, to treat the infection provides an exciting new platform for not only regener-
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ating the affected area but also treating the infection in a tailored and selective manner,
avoiding the perils of antibiotic-based treatments currently seen in osteomyelitis
patients.
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